Измерительные трансформаторы тока: назначение, устройство, схемы

Измерительные трансформаторы тока и напряжения применяются на промышленных предприятиях, в линиях электропередач для контроля различного электрического оборудования.

Аварийность высоковольтных измерительных трансформаторов контролируется соответствующими системами. С их участием ведется учет потребления электричества.

Что собой представляют измерительные трансформаторы напряжения и тока, назначение и принцип действия установок будет рассмотрено далее.

Измерительные трансформаторы тока: назначение, устройство, схемы

Разновидности

Высоковольтное измерительное оборудование включает в себя два типа устройств. В эту категорию устройств входят:

  • Измерительный трансформатор напряжения.
  • Измерительный трансформатор тока.

Первая категория приборов предназначена для работы вольтметров, фазометров, реле соответствующих типов. В область работы измерительных трансформаторов тока входит осуществление функционирования амперметров и прочего подобного оборудования.

Представленные типы измерительных трансформаторов производятся с номинальной мощностью от 5 до нескольких сот ВА. Измерительные трансформаторы тока и напряжения предназначены для совместной работы с вольтметрами на 100 В и амперметрами 1-5 А.

Трансформатор тока

Измерительными преобразователями тока выполняется несколько особых функций. К ним подключаются установки, которые выполняют измерение работы оборудования в разных режимах. Принцип действия, которым характеризуется трансформатор тока, обеспечивает несколько основных функций аппаратуры. К ним относится следующее:

  • Преобразование переменных токовых показателей к значениям 1 или 5 А.
  • В нормальном режиме изолируют вторичный токовый контур от высоковольтной составляющей первичной обмотки.
  • Снижение аварийности. Установка предотвращает поражение обслуживающего персонала током, защиту вторичных цепей от перегрузки.

Измерительные трансформаторы постоянного тока помимо перечисленных функций имеют в своем составе выпрямитель. Вторичные цепи заземляются во всех трансформаторах в одной точке. При повреждении изоляции монтаж измерительных трансформаторов позволяет предотвратить перегрузку вторичного контура.

Измерительные трансформаторы тока: назначение, устройство, схемы

Условия эксплуатации

Измерительные трансформаторы постоянного тока, переменного тока представляют собой высоковольтный агрегат. Прибор нормально функционирует только при выполнении правил по эксплуатации, требований охраны труда.

Персонал знакомится со всеми установленными нормами, в каком режиме производится обслуживание, испытание измерительного оборудования. Сотрудники допускаются до работы с трансформатором только после полного инструктажа.

Персонал должен знать, при каких условиях производится испытания, осмотр, поверка и ремонт измерительных трансформаторов. В противном случае даже при условии правильного монтажа работу технической установки могут нарушить неправильные действия сотрудников.

Измерительные трансформаторы тока: назначение, устройство, схемы

Принцип устройства конструкции запрещает размыкать вторичную обмотку в трансформаторе, которая находится под напряжением. Такому действию сопутствует нарушение изоляции. Потребуется произвести ее замену. Сердечник перегревается.

Нормальный режим работы нарушается. В процессе постоянных перегрузок трансформатору становится невозможно выполнять возложенные на него действия. Работает в этом случае неправильно и первичная обмотка. Здесь появляется замыкание.

Это также приводит к замене контура.

Чтобы переключить в процессе испытаний в схеме при подведенном электрическом токе, предварительно вторичную катушку закорачивают.

Погрешность

Измерительные выпрямители и трансформаторы тока нуждаются в проверке погрешности. В ходе испытательного процесса к агрегату присоединяется аналогичное оборудование. При монтаже важно, чтобы при поверке техники применялся образцовый, исправный трансформатор тока. В ходе измерений на его вторичном контуре определяется показатель при помощи амперметра.

Измерительные трансформаторы тока: назначение, устройство, схемы

Испытание оборудования определяет не только погрешность, но и ряд других показателей. В ходе поверки вычисляется коэффициент трансформации, производится техническое освидетельствование качества изоляции контуров, состояние сердечника. Исследуется вопрос о том, выполняется ли установкой возложенные на нее функции, соответствует ли полярность обмоток заданным производителем характеристикам.

Измерительные трансформаторы тока: назначение, устройство, схемы

При проведении технического освидетельствования соответствия оборудования нормативным требованиям производится контроль вторичных цепей. В случае выявления отклонений, дефектов, требуется замена комплектующих. В зависимости от назначения аппаратура должна демонстрировать заявленные производителем характеристики.

Трансформатор напряжения

Измерительные трансформаторы напряжения применяются для понижения напряжений первичного контура с уровня 110, 40, 6, 10 кВ и т. д. Таким трансформаторам доступно выполнять ряд функций:

  • Преобразовывать первичное переменное напряжение в стандартный электрический ток.
  • Защита обслуживающего персонала, подключенных приборов от перегрузок.
  • Техническая поддержка оперативных цепей, которые работают от постоянного и переменного тока

По принципу функционирования измерительные трансформаторы напряжения приближаются к режиму холостого хода. Пользуются спросом такие разновидности представленной измерительной техники, как НТМК, НАМИ, НОЛ и прочие агрегаты. Установки работают с постоянным и переменным током, которые соответствуют назначению. Мы уже писали про трансформаторы НТМИ, подробнее читайте здесь.

Измерительные трансформаторы тока: назначение, устройство, схемы

Конструкция

Конструкция приборов измерительного типа схожа на обычные силовые разновидности оборудования. Агрегат имеет первичную и вторичную (одну или несколько) обмотки. Активная часть включает в себя серечник из специальной электротехнической стали. Материал набран в виде пластин определенной конфигурации.

Первичный контур имеет большее количество витков, чем на вторичной катушке. На него подается напряжение от сети. К выводам вторичной обмотки подсоединяется ваттметр или иное подобное измерительное оборудование. Оно характеризуется высоким сопротивлением. Поэтому в ходе нормальной работы по вторичной обмотке подается ток с малым значением.

Измерительные трансформаторы тока: назначение, устройство, схемы

На выходе устройство может коммутироваться с различными реле, вольтметром, ваттметром. Принцип действия системы похож на работу силового оборудования. Работа производится с переменным значением электрического тока. Чтобы преобразовать его в постоянную величину, используется в конструкции выпрямитель.

Измерительные трансформаторы тока: назначение, устройство, схемы

Погрешность

Класс точности представленного оборудования зависит от определенных факторов. На этот показатель влияют потери при намагничивании. На величину погрешности измерительного преобразователя напряжения влияют следующие факторы:

  • Проницаемость электротехнической стали сердечника.
  • Конструкционное исполнение магнитопривода.
  • Коэффициент мощности, который определяется вторичной нагрузкой.

Оборудование способно компенсировать погрешность показателя напряжения при уменьшении количества витков в первичной катушке. Компенсирующие обмотки влияют на уменьшение угловой погрешности.

Обслуживание

Перед монтажом, запуском в эксплуатацию производится испытание представленного оборудования. При измерениях выполняется изучение режимов работы поверяемых агрегатов, а также контроль изоляционных слоев.

Измерительные трансформаторы тока: назначение, устройство, схемы

В измерительном процессе применяется соответствующая техника. Поверка производится в условиях производства оборудования. После монтажа также необходимо производить соответствующую оценку работы оборудования заявленным характеристикам. Если будут выявлены отклонения, выполняется ремонт измерительных трансформаторов.

Периодически в соответствии с условиями эксплуатации производится техническое обслуживание агрегата. На это влияет тип конструкции. Соответствующее обслуживание аппаратуры позволяет избежать сбоев в работе системы, непредвиденных поломок, остановок в работе.

Измерительные трансформаторы тока: назначение, устройство, схемы

Установкой, обслуживанием представленной техники имеет право заниматься только квалифицированный персонал. В противном случае это будет небезопасно для сотрудников. Неправильное обслуживание приводит к нарушению работы техники.

Рассмотрев особенности измерительных преобразовательных приборов, можно понять их отличие, особенности эксплуатации и обслуживания. Это поможет подобрать оборудование, необходимое для обеспечения соответствующих потребителей электрическим током заданного значения.

Источник: https://ProTransformatory.ru/vidy/izmeritelnye-transformatory

Измерительные трансформаторы

17:31, 06 декабря 2018   Просмотров: 892

Измерительные трансформаторы тока: назначение, устройство, схемы

Электрическое оборудование нуждается в постоянном контроле — особенно на крупных производствах. Для отслеживания состояния электрооборудования в промышленных компаниях и нужны измерительные трансформаторы. Они помогают регулировать потребление электричества. Общая классификация делит эти устройства на 2 типа – трансформаторы тока и трансформаторы напряжения.

Зачем нужны трансформаторы?

Если в оборудовании до 1000 В напряжение измеряют путем подключения вольтметров, то в сетях мощностью выше 6 кВ это недопустимо. Тому есть 2 причины:

  1. Чтобы измерить высокую силу тока, ее нужно предварительно понизить до параметра, который будет восприниматься рамкой стрелочного прибора или электронными преобразователями. Резистивные измерители с задачей справиться не смогут, а уменьшающий трансформатор будет неудобно использовать из-за его громоздкости.
  2. Обмотка проводников должна выдержать среднюю нагрузку электрооборудования. Также необходимо соблюдение промежутков между фазами ПУЭ. Без трансформаторов выполнение этих условий невозможно.

Силу тока перед измерением нужно понижать. Трансформаторы напряжения и тока здесь отлично помогут.

Конструкции и виды трансформаторов

Трансформаторы тока и напряжения выполняют одну функцию, но имеют конструктивные различия.

Устройства напряжения

Независимо от того, для какой силы тока предусмотрена первичная обмотка, вторичная катушка всегда имеет одно напряжение – 100 В. Для счетчика электроэнергии не имеет значения, с какими устройствами «сотрудничать» – 6 кВ, 10 кВ или другими.

Поэтому если для него подходят измерительные трансформаторы напряжения (ТН), в технических характеристиках счетчика указывается 3×100. Это значит, что к одному устройству должно подключаться сразу 3 фазы.

Измерительные трансформаторы тока: назначение, устройство, схемы

Устройства измерения напряжения по конструкции могут быть 2 видов:

  • Компонент для преобразования одной фазы помещен в отдельный корпус. Если устройство трехфазное, подключают сразу 3 элемента.
  • В одном корпусе находится элемент для работы сразу с 3 фазами. Первичные обмотки всех компонентов трехфазного устройства соединены в виде звезды.

Для защиты первичных обмоток служат предохранители. Вторичные обмотки раньше защищались аналогично, сейчас предохранители заменили автоматическими выключателями.

У устройств напряжения несколько вторичных обмоток:

  • для учетных приборов (точность 0.5);
  • для измерительных элементов (точность 0.5);
  • для компонентов релейной защиты (класс 10P);
  • для рассоединенного треугольника (класс 10P).

Класс точности нужен для фиксации измерений. Но здесь важно учитывать, что измерительная обмотка будет работать в указанном классе точности, если нагрузка на нее не превышена. Поэтому на приборе обязательно прописывается допустимая мощность.

Устройства тока

Измерительные трансформаторы тока (ТТ) тоже оборудованы первичной и вторичной обмотками. Однако есть некоторые отличия:

  • первичный слой может иметь одну или несколько закруток, но чаще всего он выглядит, как шина, которая проходит через весь корпус;
  • у ТТ до 1000 В только одна вторичная катушка, у высоковольтных – минимум две.

Заявленный ток на второй обмотке всегда будет равен 5 А независимо от напряжения, для которого подготовлена первичная катушка. В остальном по принципу работы ТТ аналогичен ТН.

Измерительные трансформаторы тока: назначение, устройство, схемы

Технические характеристики трансформаторов тока

Наиболее важны следующие характеристики устройств:

  1. Номинальное напряжение. Оно прописывается в киловольтах в техпаспорте оборудования. Цифра может иметь разброс от 0,66 до 1150 кВ.
  2. Заявленный ток на первичной катушке (l1). Зависит от конкретной категории устройства. Допускается разброс от 1,0 до 40000,0 А.
  3. Ток вторичной обмотки (l2). Встречаются значения 1,0 А или 5,0 А. На заказ могут производиться приборы на 2,0 А или 2,5 А.
Читайте также:  Как соединить 2 провода, которые отличаются друг от друга?

Еще одним важным значением считают коэффициент трансформации (КТ). Он характеризует взаимоотношения между первичным и вторичным токами. Рассчитывается по формуле КТ=L1/L2. Вычисляемый таким образом коэффициент считается действительным.

Принцип действия трансформаторов

В основе работы трансформаторов лежит закон электромагнитной индукции. Пошаговая расшифровка принципа работы такова:

  1. Из внешней электросети ток отправляется на силовую первичную катушку, где работает с ее сопротивлением. В результате вокруг обмотки возникает магнитный ток.
  2. Это поле улавливается магнитопроводом. Магнитный поток размещается перпендикулярно направлению тока, поэтому потери силы тока во время трансформации минимальны.
  3. Затем начинается пересечение вторичной обмотки, в ходе которого магнитный поток активирует функции, движущие электроток.

Измерительные трансформаторы тока: назначение, устройство, схемы

Под воздействием электродвижущей силы возникает ток, которому приходится преодолевать полное сопротивление катушки и итогового напряжения. При выходе из вторичной обмотки нагрузка падает.

Варианты маркировки

На корпусе каждого трансформатора есть маркировка с техническими данными. Встречаются такие маркировки:

  1. ТДТН-1600/110. Уменьшающее устройство с трехфазным действием. Снабжено принудительным масляным охлаждением и компонентом РПН. Заявленная мощность – 1600, показатели на обмотке – 110 кВ.
  2. ТМ-100/10. Трансформатор с двойной обмоткой. Предназначен для работы с трехфазной сетью. Процесс охлаждения естественный, работает на масле. Нагрузка меняется посредством ПБВ узла. Допустимая сила – 100 кВА, класс обмотки – 10 кВ.
  3. АТДЦТН-120000/500/110-85. Автотрансформатор для сети с 3 фазами, оснащенный 3 катушками. Искусственная система масляной циркуляции. Есть устройство РПН. Мощность 25 МВА, производительность обмотки – 35 кВ. Используется на электростанциях.
  4. ТРДНС-25000/35-80. Оборудование для подключения к трехфазной электросети. Имеет 2 расщепленные обмотки. Охлаждается путем циркулирования масляной жидкости. Мощность 25 МВА. Класс напряжения – 35 кВ. Конструкция была изготовлена в 1980 году.

Измерительные трансформаторы тока: назначение, устройство, схемы

Схема подключения трансформатора

Рассмотрим схему подключения оборудования на примере однофазного устройства. Особенно внимательно нужно отнестись к порядку подключения кабелей к клеммам:

  1. К первой клемме присоединяется фазный провод. Он может быть белым, черным или коричневым.
  2. Ко второй клемме подключают фазный провод, который испытывает силовую нагрузку. Цвет кабеля такой же – коричневый, белый или черный.
  3. К третьей клемме крепят нулевой электропровод. Он окрашен в голубой или синеватый цвет.
  4. На четвертую клемму подключается провод «ноль» голубого или синего оттенка.

Такое устройство не требует обеспечения защиты на заземление. На однофазном счетчике есть дополнительные участки для подключения. Они считаются вспомогательными и служат для обеспечения большей эффективности. Также с их помощью можно организовать автоматизированный учет потребляемой электроэнергии.

Измерительные трансформаторы тока: назначение, устройство, схемы

Как выбрать трансформатор?

При выборе трансформатора учитывайте заявленное напряжение устройства — оно не должно быть ниже, чем в электросети. Для трехфазной электросети в 380 В подойдет ТТ с показателем от 0,66 кВ. Однако на оборудование с мощностью свыше 1000 В его ставить нельзя.

Есть и другие правила:

  1. Сечение кабеля для подсоединения трансформатора к цепи вторичной катушки не должно вызывать превышенные потери. Например, для класса с точностью 0,5 максимально возможные растраты – 0,25%.
  2. В системах коммерческого учета ставят оборудование с высокими разрядами точности и минимальной степенью погрешности.
  3. Возможна установка приборов с превышенным КТ. Но только если при максимальной нагрузке напряжение составит меньше половины от теоретически возможного.

Лучше делать акцент на брендовых марках — скажем, Schneider Electric, ABB. Только тогда можно быть уверенным, что цифры из техпаспорта будут соответствовать действительности.

Источник: https://www.equipnet.ru/articles/tech/tech_54363.html

Трансформаторы тока назначение и принцип действия

Содержание:

В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений.

С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью.

В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Измерительные трансформаторы тока: назначение, устройство, схемы

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле.

Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение.

Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока.

Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле.

За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока: назначение, устройство, схемы

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление.

Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока.

За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.

Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Измерительные трансформаторы тока: назначение, устройство, схемы

Номинальный ток. Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение. Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации. Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Читайте также:  Как выглядит схема подключения ограничителя мощности ом-1-1?

Токовая погрешность. Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

Номинальная нагрузка. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность. Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока. Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

Измерительные трансформаторы тока: назначение, устройство, схемы

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

Источник: https://electric-220.ru/news/transformatory_toka_naznachenie_i_princip_dejstvija/2017-01-24-1161

Особенности применения и выбора измерительных трансформаторов тока

Измерительные трансформаторы тока: назначение, устройство, схемы

Измерительный трансформатор тока — это специальный прибор узкого направления, который предназначен для измерения переменного тока и его контроля. Чаще всего применяется в системах релейной защиты (автоматики) и измерительных приборов. Его использование необходимо тогда, когда непосредственное присоединение прибора для измерения, к электрической сети с переменным напряжением невозможно или небезопасно для персонала обслуживающего его. А также для организации гальванической развязки первичных силовых цепей от измерительных. Расчёт и выбор измерительного трансформатора тока выполняется таким образом, чтобы изменения формы сигнала были сведены к нулю, а влияние на силовую контролируемую цепь было минимальным.

Назначение измерительных трансформаторов

Главная функция этого измерительного прибора — это отображение изменений тока, максимально пропорционально.

Трансформаторы тока гарантируют полную безопасность измерений, отделяя измерительные цепи от первичных с опасным высоким напряжением, которое чаще всего составляют тысячи вольт.

Требования, предъявляемые к их классу точности очень велики, так как от этого зависит работа дорогостоящего мощного оборудования.

Принцип действия и конструкция

Задача и особенности заземления трансформаторов.

Трансформаторы измерительные выпускают с двумя и больше группами вторичных обмоток. Первая применяется для включения устройств релейной защиты и сигнализации. А другая, с большим классом точности, для подключения устройств точного измерения и учёта.

Они помещены на специально изготовленный ферромагнитный сердечник, который набран из листов специальной электротехнической стали довольно тонкой толщины.

Первичную обмотку непосредственно включают последовательно в измеряемую сеть, а ко вторичной обмотке подключают катушки различных измерительных приборов, чаще всего амперметров и счетчиков электроэнергии.

В трансформаторах тока, как и в большем количестве других таких электромагнитных устройств, величина первичного тока больше, чем вторичного. Первичная обмотка исполняется из провода разного сечения или же шины, в зависимости от номинального значения тока.

В трансформаторах тока 500 А и выше, первичная обмотка чаще всего выполнена из 1-го единственного витка. Он может быть в виде прямой шины из меди или алюминия, которая проходит через специальное окно сердечника.

Корректность измерений любого измерительного трансформатора характеризуется погрешностью значения коэффициента трансформации. Для того чтобы не перепутать концы, на них обязательно наносится маркировка.

Аварийная небезопасная работа, связана с обрывом вторичной цепи ТТ при включенной в цепь первичной, это приводит к очень сильному намагничиванию сердечника и даже при обрывe вторичной обмотки. Поэтому при включении без нагрузки вторичные обмотки соединяются накоротко.

По классу точности все измерительные ТТ разделены на несколько уровней. Особенно точные, называются лабораторные и имеют классы точности не больше 0,01–0,05;

Схемы соединений

Особенности применения и устройства сварочных трансформаторов

Схемы соединений, представленные ниже, дают возможность персоналу контролировать токи в каждой из фаз.

В целях безопасности персонала, низковольтного измерительного оборудования и приборов один вывод вторичной обмотки, а также корпус заземляют.

Классификация и выбор

Подключение счетчика через трансформаторы тока

По конструкции и исполнению трансформаторы тока используемые в измерительных цепях делятся на:

  • Встроенные. Первичная обмотка у них служит элементом для другого устройства. Они устанавливаются на вводах и имеют только вторичную обмотку. Функцию первичной обмотки выполняет другой токоведущий элемент линейного ввода. Конструктивно это магнитопровод кольцевого типа, а его обмотки имеют отпайки, соответствующие разным коэффициентам трансформации;
  • Опорные. Предназначенные для монтажа и установки на опорной ровной плоскости;
  • Проходной. По своей структуре это тот же встроенный, только вот находиться он может снаружи другого электрического устройства;
  • Шинный. Первичной обмоткой служит одна или несколько шин включенных в одну фазу. Их изоляция рассчитывается с запасом, что бы он мог выдержать даже многократное увеличение напряжения;
  • Втулочный. Это одновременно и проходной, и шинный трансформатор тока;
  • Разъемный. Его магнитопровод состоит из разборных элементов;
  • Переносной. Это устройство электрики называют токоизмерительные клещи. Они являются переносным и удобным измерительным трансформатором тока, у которого магнитная система размыкается и замыкается уже вокруг того провода в котором и нужно измерять значение тока.

При выборе трансформатора тока стоит знать главное, что при протекании по первичной обмотке номинального тока в его вторичной обмотке, которая замкнута на измерительный прибор, будет обязательно 5 А.

То есть если нужно проводить измерение токовых цепей где его расчётная рабочая величина будет примерно равна 200 А. Значит, при установке измерительного трансформатора 200/5, прибор будет постоянно показывать верхние приделы измерения, это неудобно.

Нужно чтобы рабочие пределы были примерно в середине шкалы, поэтому в этом конкретном случае нужно выбирать трансформатор тока 400/5.

Это значит что при 200 А номинального тока оборудования на вторичной обмотке будет 2,5 А и прибор будет показывать эту величину с запасом в сторону увеличения или уменьшения. То есть и при изменениях в контролируемой цепи будет видно насколько данное электрооборудование вышло из нормального режима работы.

Вот основные величины, на которые стоит обратить внимание при выборе измерительных трансформаторов тока:

  1. Номинальное и максимальное напряжение в первичной обмотке;
  2. Номинальное значение первичного тока;
  3. Частота переменного тока;
  4. Класс точности, для цепей измерения и защиты он разный.

Техническое обслуживание

Эксплуатация измерительных трансформаторов не является очень сложным и трудоёмким процессом. Действия персонала заключаются, в основном, в надзоре за исправностью его вторичных цепей, наличием защитных заземлений и показаниями приборов контроля, а также счётчиков.

Осмотр чаще всего производится визуальный, из-за опасности поражения человека высоким напряжением, вход за ограждения, где установлены трансформаторы строго запрещён. Однако, это касается в большей степени систем с напряжением выше 1000 Вольт.

Для низковольтных цепей визуальный осмотр на наличие нагрева соединений, а также коррозии контактных зажимов является неотъемлемой работой электротехнического персонала. Самый часто применяемый прибор для измерения тока в цепях 0,4 кВ это токоизмерительные клещи.

Так как при расчёте и разработке пусковой аппаратуры очень редко используются стационарные трансформаторы для измерения.

В любом случае нужно обращать внимание и принимать меры к устранению обнаруженных дефектов таких как:

  1. Обнаружение трещин в изоляторах и фарфоровых диэлектрических элементах;
  2. Плохое состояние армированных швов;
  3. Потрескивания и разряды внутри устройства;
  4. Отсутствие заземления корпуса или вторичной обмотки.

Проводя обслуживание измерительных трансформаторов, на щитах где установлены приборы, нужно смотреть не только за показаниями приборов, а ещё и за контактными соединениями проводов, которые подключаются к ним. Кстати, их сечение не должно быть меньше 2,5 мм² для медных проводов, и 4 мм² для алюминиевых.

Проверка измерительных трансформаторов

Испытание измерительных трансформаторов сводится к измерению сопротивления изоляции и коэффициента трансформации, который определяется по следующей схеме.

При этом в первичную обмотку от специального нагрузочного трансформатора или автотрансформатора подаётся ток не меньше 20% от номинального.

Как известно, коэффициент трансформации будет равен соотношению тока в первичной обмотке к току во вторичной. После чего это значение сравнивается с номиналом.

Если трансформатор имеет несколько вторичных обмоток, то необходимо проверит каждую. И также нельзя забывать о наличии правильной маркировки.

Выбор нужно трансформатора тока, а также их испытательные характеристики определяют в лабораторных условиях специальный высококвалифицированный электротехнический персонал, где и выдаётся соответствующий документ по его результатам.

Источник: https://amperof.ru/elektropribory/osobennosti-primeneniya-i-vybora-izmeritelnyh-transformatorov-toka.html

62.Измерительные трансформаторы тока и напряжения. Режимы работы, погрешность измерения

118.. СХЕМЫ ВКЛЮЧЕНИЯ ИЗМЕРИТЕЛЬНЫХ
ТРАНСФОРМАТОРОВ.

Измерительные трансформаторы
используют главным образом
для подключения электроизмерительных
приборов в цепи
переменного тока высокого напряжения.
При этом электроизмерительные
приборы оказываются изолированны­ми
от цепей высокого напряжения, что
обеспечивает безопас­ность
работы обслуживающего персонала.

Читайте также:  Почему подсветка в выключателе света работает через раз?

Кроме
того, изме­рительные трансформаторы
позволяют расширять пределы измерения
приборов, т. е. измерять большие токи и
напряже­ния с
помощью сравнительно несложных приборов,
рассчи­танных
для измерения малых токов и напряжений.

В ряде случаев
измерительные трансформаторы служат
для подклю­чения
к цепям высокого напряжения обмоток
реле, обеспечи­вающих защиту
электрических установок от аварийных
режи­мов.

Типы
измерительных трансформаторов.
Измерительные
трансформаторы
подразделяют на два типа — трансформато­ры
напряжения и трансформаторы тока.

Первые
служат для
включения вольтметров и других приборов,
реагиру­ющих
на значение напряжения (например, катушек
напряже­ния ваттметров, счетчиков,
фазометров и различных реле).

Вторые
служат для включения амперметров и
токовых катушек указанных приборов.

Трансформатор
напряже­
ния. Его выполняют
в виде двухобмоточного
понижа­ющего
трансформатора (рис. 3.33, а). Для
обеспече­ния
безопасности работы обслуживающего
персонала вторичную
обмотку тщате­льно
изолируют от первич­ной
и заземляют.

Рис. 3.33. Схема включения (а) и век­торная диаграмма измерительного трансформатора напряжения (б)

Так как сопротивления обмоток
вольтметров и других приборов, подключаемых
к трансформатору на­пряжения, велики,
то он практически работает в режиме
холостого хода. В этом режиме можно с
достаточной степенью точности считать, что Ul
=
U'2=U2k.

В действительности
ток холостого хода I
(а также не­большой ток нагрузки)
создает в трансформаторе падение
напряжения,
поэтому, как видно из векторной диаграммы
(рис. 3.

33, б),

и между
векторами этих напряжений имеется
некоторый сдвиг по фазе δu.

В результате при изме­рениях
образуются некоторые погрешности.

В измерительных
трансформаторах напряжения различа­ют
два вида погрешностей:

а)
относительную
погрешность напряжения

б) угловую
погрешность δu;
за ее значение
принимают угол
между векторами
и — .

Она влияет
на результаты измерений, выполненных
с помощью ваттметров, счетчиков,
фазометров и
прочих приборов, показания которых
зависят не только
от силы тока и напряжения, но и от угла
сдвига фаз между
ними. Угловая погрешность считается
положительной,
если вектор

png» width=»24″>
опережает вектор .

В зависимости от
значения допускаемых погрешностей
стационарные
трансформаторы напряжения подразделяют
на три класса точности: 0,5; 1 и 3, а
лабораторные — на четыре
класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса
соот­ветствует
значению относительной погрешности уипри номинальном
напряжении Ulном.
Угловая их
погрешность составляет
20… 40 угл. мин.

Выпускаемые
промышленностью трансформаторы
напря­жения
сохраняют класс точности при изменении
первичного напряжения
от 80 до 120% номинального.

Рис.
3.34.
Схема включения измерительного трансформатора тока (а), общий
вид проходного изолятора (б)
и векторная диаграмма (в):

1
медный стержень (первичная обмотка); 2
— вторичная обмотка; 3

магнитопровод

Для уменьшения погрешностей уии δи
сопротивления обмоток
трансформатора
и

png» width=»20″>делают
по возможности малыми, а магнитопровод
выполняют из высококачественной стали
достаточно большого поперечного сечения,
чтобы в рабочем режиме он не был
насыщен.

Благодаря этому обес­печивается
значительное уменьшение тока холостого
хода.

Трансформатор
тока.
Его
выполняют в виде двухобмоточ­ного
повышающего трансформатора (рис. 3.34, а)
или в виде проходного
трансформатора, у которого первичной
обмот­кой
служит провод, проходящий через окно
магнитопровода.

В
некоторых конструкциях магнитопровод
и вторичная обмотка
смонтированы на проходном изоляторе,
служащем для
ввода высокого напряжения в силовой
трансформатор или
другую электрическую установку.

Первичной
обмоткой трансформатора
служит медный стержень, проходящий
вну­три
изолятора (рис. 3.34, б).

Сопротивления
обмоток амперметров и других приборов,
подключаемых к трансформатору тока,
обычно малы. Поэто­му он практически
работает в режиме короткого замыкания,
при котором токи
I1
и
во много раз больше тока I0,
и с достаточной степенью точности можно считать, что

В действительности из-за наличия тока
холостого хода
в рассматриваемом
трансформаторе
и между векторами
этих токов имеется некоторый угол,
отличный от 180°
(рис. 3.34, в). Это
создает относительную токовую по­грешность

и угловую погрешность, измеряемую углом
δi,
между векто­рами
и
.

Погрешность
δiсчитается
положительной, если
вектор —
опережает вектор .

В зависимости от значения допускаемых
погрешностей трансформаторы
тока подразделяют на пять классов
точнос­ти: стационарные — 0,2; 0,5;
1; 3; 10 и лабораторные — 0,01; 0,02;
0,05; 0,1; 0,2. Приведенные цифры соответствуют
допус­каемой
для данного класса токовой погрешности
при номи­нальном
значении тока. Угловая погрешность
составля­ет
10… 120 угл. мин.

Для уменьшения токовой и угловой
погрешностей магнитопровод
трансформатора тока изготовляют из
высоко­качественной
стали достаточно большого сечения,
чтобы в рабочем
режиме он был не насыщен (B
= 0,06…0,1 Тл). При
этих условиях намагничивающий ток будет мал.

Следует отметить, что размыкание цепи
вторичной обмотки
трансформатора
тока недопустимо.
Трансформатор
переходит в режим х.х. и его
результирующая МДС, в рабочем режиме
равная

png» width=»85″>,
становится
(рис. 3.34, в).

В резуль­тате
резко (в десятки и сотни раз) возрастает
магнитный поток в
магнитопроводе, а индукция в нем достигает
значения В>2
Тл, что приводит
к сильному возрастанию магнитных потерь
в стали; при этом трансформатор может
сгореть.

Еще большую
опасность представляет резкое
повышение напряжения
на
зажимах вторичной обмотки
до
нескольких сотен и даже тысяч вольт.
Для предотвращения режима холостого
хода при отключении
приборов следует замыкать вторичную
обмотку трансформатора
тока накоротко.

Измерительный
тр-р тока (ТТ)- Это спец тр-р,работающий
в режиме КЗ и предназначен для расширения
пределов измерений приборов, реагир на
величину тока(амперметр,ток катушки)

Токовый
датчик для измерения параметров
переменного тока может рассматриваться
как разновидность простого трансформатора
тока. Трансформатор по существу имеет
две катушки на общем железном сердечнике.
Напряжение I1подаётся на катушку В1,
наводя через общий сердечник напряжение
I2 на катушке В2.

Тот
же самый принцип используется в токовом
датчике (см. рис.). На замкнутом
магнитопроводе в виде клещей замкнутых
на проводнике, находится катушка B2 , по
которой протекает электрический ток
I1.

В1
это просто проводник, на котором
пользователь проводит измерения, при
количестве обмоток, образуемых проводником
— равным единице. Токовый датчик замкнутый
вокруг проводника вырабатывает выходной
ток, значения которого определяются
количеством витков на катушке В2, по
формуле:

I2
(выход датчика) = (N1 / N2) x I1, где N1 = 1 или,
иначе, Выходное значение датчика = I1/N2
(где N2 это число витков на катушке
датчика).

Часто
бывает очень трудно измерить I1
непосредственно, так как значение силы
тока слишком велико, чтобы подавать его
непосредственно на цепь измерительного
прибора, или просто потому, что недопустимо
разрывать цепь. Для обеспечения
приемлемого выходного значения на
катушке датчика размещается большое  
количество витков.

коэф-т
тр-и по току I1=Ki*I2 F2=W2*I2

Количество
витков на катушке датчика в большинстве
случаев имеют кратные значения (например,
100, 500 или 1000).

Если
N2 равно 1000, в этом случае клещи имеют
соотношение N1/ N2 или 1/1000, которое
обозначается как 1000:1. Ещё один способ
выразить соотношение это сказать что
выходное значение датчика 1 мА/А — выходное
значение 1 мА (I2) для 1А (или 1А@1000А)
появляющееся на дисплее датчика.

Существует множество других возможных
соотношений: 500:5, 2000:2, 3000:1, 3000:5 и так
далее  — для различного применения.
В большинстве случаев токовый датчик
используется с цифровым мультиметром.

Рассмотрим для примера токовый датчик
с соотношением 1000:1 с токовым выходом и
соотношением 1мА/A.  

Данное соотношение означает, что ток, протекающий через захваты токовых клещей преобразуется в ток на выходе следующим образом: Входной ток проводника Выходной ток датчика
1000A 1 A
750A 750 мА
250A 25OмА
10A 10 мА

Измерительные
трансформаторы тока (ТТ) в процессе
эксплуатации подвергаются воздействию
многочисленных внешних факторов, которые
оказывают влияние на их метрологические
характеристики. Одним из таких факторов
являются токи короткого замыкания. При
коротком замыкании ток, протекающий
через ТТ, характеризуется следующими
особенностями:

  • большая кратность тока, протекающего через первичную обмотку. Ток короткого замыкания может превышать номинальный первичный ток в сотни раз;
  • наличие апериодической составляющей в кривой тока;
  • при отключении тока короткого замыкания ток, протекающий через ТТ, отключается не в момент перехода тока через ноль.

Вопрос №96 Измерительные трансформаторы
напряжения погрешности и режимы работы.

Трансформатор
напряжения – трансформатор небольшой
мощности, предназначенный для расширения
пределов измерения приборов, реагирующих
на напряжения-ваттметры,
вольтметры,электросчетчики.

png» width=»308″>
Измерительный трансформатор может
также работать как сельсин. Этот режим
используется тогда когда требуется
измерить угол рассогласования. он
состоит из сельсин датчика сельсин
трансформатора.

ст возбуждается тремя
переменными фазовыми напряжениями сд
и создает переменное напряжение снимаемое
с однофазной обмотки. То есть при
повороте ротора сельсин датчика
результирующий магнитный поток в трех
фазной цепи сельсин трансформатора поворачивается на тот же угол, но в
противоположном направлении.

Точность
в сельсинной схеме измерения рассогласования
погрешность характеризуется напряжением
на выходной обмотке ст, когда угол
рассогласования равен 0.Погрешности
могут быть статическими и динамическими.

Статическая погрешность вызывается
несинусоидальностью кривой взаимоиндукции
между однофазной и трех фазной обмотками,
а также нессиметрией фазовых обмоток
сельсина. Динамические погрешности
возникают врезультате появления скорости
и достигает значительных величин области
больших скоростей.

Обычно допустимая величина угла
рассогласования в следящей системе в
сравнении с собственной ошибкой сельсинов
очень мала.

Это означает, что при углах
рассогласования, не выходящих за пределы
собственной ошибки сельсинов, выходное
напряжение измерителя рассогласования
либо равно нулю либо на столько мало
что не вызывает реакции исполнительного
элемента. Поэтому в данных системах
достичь высокой точности невозможно.

Источник: https://studfile.net/preview/4598349/

Ссылка на основную публикацию
Adblock
detector