Повреждения в электроустановках: виды, причины, меры защиты

Поражение электрическим током – это причина контакта с электроцепью источников напряжения или тока, способных, по попавшей под напряжение части тела, вызвать протекание тока.

Человеческий организм обычно реагирует на силу тока более 1 мА.

Получить удар электрическим током возможно и на высоковольтных установках, или поблизости с ними, не контактируя с токоведущими элементами, а за счёт утечки тока при образовании электрической радуги.

Повреждения в электроустановках: виды, причины, меры защиты

Уровень поражения человека зависит от многих факторов: мощности разряда, характера тока, состояния человека (влажности кожи, одежды), местности, а также пути прохождения тока по организму.

Особенности:

  • Отсутствие видимых внешних показателей грозящей опасности поражения электротоком (ток – это то, что невидно и не слышно, его невозможно обнаружить заблаговременно и предотвратить).
  • Уровень сложности травм после поражения током (многочисленные ожоги могут повлиять на дееспособность и уровень жизни, или привести к смертельному исходу).
  • При попадании человека в зону поражения с электротоком промышленных частот величиной в 10-25 мА могут появиться судороги мышечных тканей, в связи с чем ограничивается дееспособность человека, и он не может освободиться от воздействия тока без посторонней помощи, так как приковывается к пораженным током частям.
  • Могут быть вызваны непроизвольные сокращения мышечных тканей из-за взаимодействия внешнего тока с биотоками человеческого организма.

Поражение током влечёт за собой вероятность получения механических травм (контакт и воздействие электротока на высоте может привести к потере сознания, падению, травмированию).

Основные виды поражения

Виды поражения электрическим током организма человека:

  • Термическое – связано с функциональными расстройствами и ограничениями – ожоги кожи разной степени, повреждение и перегрев сердечно-сосудистой системы, коры головного мозга и других важных для жизнедеятельности организма органов, что является причиной многих функциональных расстройств и ограничений дееспособности.
  • Электролитическое – воздействует на кровь и органические жидкости таким образом, что начинается процесс их разложения.
  • Биологическое – является причиной раздражения мышечной и нервной ткани, нарушения работы сердца и кровеносной системы, дыхательных путей, провоцирует появление судорог и потери сознания. Итогом такого вида поражения может стать фибрилляция мышцы сердца, отказ дыхательных органов, а также смертельный исход.
  • Механическое – влечёт за собой разрыв, расслоение или другие подобные повреждения мягких тканей организма человека.

Причины и условия травмирования

Ими зачастую становятся:

  1. Контакт с токоведущими деталями под электронапряжением.
  2. Контакт с токопроводящими деталями под электрическим напряжением по причине неисправности изоляции или защитных устройств.
  3. Нарушение правил техники безопасности при использовании электрооборудования и электрических установок.
  4. Попадание в зону шагового электронапряжения.
  5. Шаговое напряжение или напряжение шага – это напряжение, образовавшееся между двумя точками цепи тока, находящихся в шаге друг от друга, на которых одновременно стоит человек. Шаговое электронапряжение зависит от удельного сопротивления почвы и силы тока, протекающего через неё, имеет максимальную величину поблизости с местом замыкания. На расстоянии свыше 8-ми метров оно не несёт практически никакой опасности. Для избежания поражения в зоне шагового электронапряжения необходимо совершать мелкие шаги, без отрыва ног друг от друга.

Классификация видов

Воздействие электрического тока несёт негативное влияние на человеческий организм и является причиной возникновения электрических травм различной степени сложности. Классификация видов поражения при воздействии электрического тока на человека:

  • Местные электротравмы – нанесение вреда организму локального характера.
  • Общие электротравмы – нанесение вреда организму за счёт нарушения стабильности работы систем обеспечения и внутренних органов.

Местные травмы

Нарушение целостности мягких и костных тканей тела человека, из-за воздействия электротока или электродуги. Это влечёт поверхностные повреждения кожного покрова, а иногда и других мягких тканей, а также связок и костей.

Повреждения в электроустановках: виды, причины, меры защитыТравмы такого характера излечимы до полного или частичного восстановления дееспособности. Смертные исходы при получении травм местного характера редкий случай, и причина смертельного исхода заключается в местном повреждении организма, спровоцированное электрическим током.
К травмам местного характера относятся:

  • Электрический ожог
  • Электрический знак
  • Электроофтальмия (поражение глаз)
  • Механические повреждения
  • Электропигментация (металлизация) кожных покровов

Электрический ожог считается самой распространённой электротравмой согласно статистики о ежегодных происшествиях при поражении электротоком. Возникает более чем у 60% потерпевших от электротока. Около 85% приходится на работников, обслуживающих электрические установки и электромонтёров.

Повреждения в электроустановках: виды, причины, меры защитыСуществют такие виды электроожога на основании влияющих факторов при поражении электрическим током:

  • Токовый – возникает при прохождении напряжения непосредственно через человеческое тело при контакте с токоведущими деталями.
  • Дуговой – возникает при воздействии электродуги на тело человека.

Ожог от электротока возникает при работе с малым напряжением на электрических установках, в пределах 2 кВ. Большие электронапряжения зачастую провоцируют образование электродуги или искры, провоцирующей появление ожогов.

Ожоги от тока поражают около 38% потерпевших от электротока, в таких ситуациях это ожоги 1-й и 2-й степени, при напряжение свыше 380 В – 3-й и 4-й степени.

  • 1 степень – вызывает появление красноты на кожных покровах.
  • 2 степень – появление волдырей.
  • 3 степень – омертвление всего кожного покрова.
  • 4 степень – обугливание мягких тканей.

Дуговой ожог возникает при работе в электроустановках под напряжением до 10 кВ при коротких замыканий во время измерения переносными приборами или за счёт ошибок персонала.

Поражение возникает от перемены элетродуги или загоревшейся от неё одежды. Уровень тяжести нанесенного вреда организму при таком виде ожога увеличивается с увеличением напряжения электроустановок.

25% ожогов составляет именно этот вид ожога.

В электроустановках причиной возникновения электродуги может послужить:

  • Приближение человека к токоведущим деталям под напряжением на такую дистанцию, при которой образуется в воздушном промежутке образуется между ними пробой.
  • Повреждение изоляционных защитных средств, с которыми происходит контакт токоведущих деталей под напряжением.
  • Ошибка операций с коммутационными аппаратами, в следствии переброса электродуги на человека.

Электрический знак – это проявление на теле овального или круглого пятна серого или светложелтого оттенка при воздействии теплового, химического или смешанного вида нанесения вреда от электротока организму человека.

Метка может быть похожа на структуру той токоведущей детали, с которой был контакт у пострадавшего. На пораженном месте кожный покров грубеет и становится твердым, так как верхний слой мягкой ткани отмирает. Электрознак является малоболезненной травмой и поддается лечению.

С течением времени омертвелая кожа обновляется, рана затягивается и поврежденный участок может быть видно только по небольшому шраму.Повреждения в электроустановках: виды, причины, меры защиты

Электроофтальмия

Причиной возникновения является воздействие электродуги, с образованием сильного излучения ультрафиолета. Потерпевший после облучения, через 2-6 часов, имеет воспалённые наружные глазные оболочки, это состояние и называется электроофтальмией или простым языком поражением глаз.

Симптомами является покраснение белков, повышенная слезоточивость, частичная потеря зрения, головная боль, боль в глазах при ярком свете, нарушение прозрачности роговицы, сужение зрачка.
При серьезном воздействии ультрафиолета на глазное яблоко лечение усложняется и увеличивается время для полного восстановления.

Механические повреждения являются следствием резких неконтролируемых судорожных сокращений мышечных тканей при воздействии проходящего по телу человека электротока.

Нанесение такого вреда может быть в основном при работе в электрических установках до 1000 В при длительном пребывании человека под высоким электронапряжением, и являются причиной элетроударов, так как их вызывает проходящий через человеческое тело ток.

Возникновение таких повреждений довольно редкое явление, около 1% пострадавших от электротока. Травмы полученные в результате такого происшествия требуют длительного и серьёзного лечения.

Электропигментация (металлизация) кожи – следствие воздействия электродуги на кожные покровы, в следствии проникновения в мягкие ткани частичек расплавленного металла.

Электрический ток влияет на возникновение теплового потока и динамических сил, образовуются брызги из частиц расплавленного металла, которые летят во всевозможные стороны.

При контакте с незащищенными участками тела они проникает в верхний кожный слой.

Общие

К этому виду травм пренадлежит электрошок и электроудар, которые являются причиной сбоя в организме пострадавшего главных функций жизнедеятельности.

Повреждения в электроустановках: виды, причины, меры защиты
Электрический удар – возбуждение тканей человеческого организма, проходящим через него разрядом тока, сопровождается интенсивным сокращениеем мышечных тканей, рассеяностью, невнимательностью и ослаблением памяти. При электроударе можно отделаться, как легким нанесения вреда организму, так и смертельным исходом. Угроза поражения охватывает весь организм, из-за нарушения работоспособности всех жизненно необходимых органов и систем.

Степени состояние человеческого организма после электрического удара:

  • 1 – человек пребывает в сознании, но наблюдается интенсивное сокращение мышечных тканей;
  • 2 – обморок, наблюдается непроизвольное сокращение мышечных тканей;
  • 3 – обморок, нарушение работы сердца, кровеносной системы и дыхательных органов;
  • 4 – прекращение функционирования органов дыхания и кровообращения, отсутствие признаков жизнедеятельности.

Электрический шок – это тяжелая физиологическая реакция или травма человека, возникающая при прохождении электротока по человеческому организму. В следствии чего нарушается здоровый процесс в органах дыхания, кровеносной системе, наблюдаются сбои в метаболизме. Потерпевший после получения электрошока страдает на гипертонию, отсутствие болевых реакций, возбужденное состояние.

Далее начинается процесс медленной реакции и истощения нервной системы, артериальное давление падает, наблюдается учащение пульса, органы дыхания работают с низкой активностью, всё это сопровождается депрессивным состоянием. Состояние может продержаться от нескольких минут до суток. Полное выздоровление, при правильном лечении, может наступить в довольно короткий срок, но без медицинского вмешательства летальный исход возможен.

Факторы, влияющие на тяжесть полученных электротравм

Повреждения в электроустановках: виды, причины, меры защиты

К обстоятельствам, влияющим на тяжесть поражения электрическим током относятся:

  • Величина силы электротока и напряжения;
  • Время прохождения потока электротока через человеческий организм;
  • Род тока (постоянный или переменный);
  • Путь или петля прохождения электротока;
  • Состояние человеческого организма;
  • Условия внешней среды.

Первая помощь при поражении электричеством

При любом виде поражения тела электрическим током необходимо оказание неотложной помощи потерпевшему, иначе состояние здоровья может существенно ухудшиться и привести к смертельному исходу.

Первым делом необходимо перекрыть подачу электротока с помощью рубильника, выключателя, выкрутить пробки или же, в крайнем случае, перебить токонесущую проводку.

Если подачу тока остановить не удаётся нужно максимально быстро придумать изоляцию для себя и потерпевшего, после чего оттащить на безопасную дистанцию и вызвать медицинскую помощь. До прибытия мед. работников, при необходимости, оказать неотложную помощь потерпевшему в виде сердечно-лёгочной реанимации.

Повреждения в электроустановках: виды, причины, меры защитыПрофилактика для предотвращения воздействия электрического тока на организм

Суть профилактики электротравм состоит в соблюдении установленных правил техники безопасности при использовании, ремонтных работах и монтаже электроустановок. Люди, работающие с высоковольтным напряжением должны быть хорошо проинструктированы и снабжены индивидуальным защитным снаряжением.

Необходимо соблюдение правил техники электробезопасности на высоком уровне в физиотерапевтических кабинетах, где заземление и короткое замыкание в электросети представляет наибольшую опасность для работника. Пол в таких помещениях должен быть покрыт изоляционным материалом.

Розетки должны иметь предохранители и крышки.

Персонал, работающий в действующих электроустановках проходит мед. осмотр разово на протяжении двух лет.

В проведении осмотра принимают участие: терапевт, хирург, невропатолог, окулист, сдаётся кровь на содержание гемоглобина и лейкоцитов, а также делается рентгеновский снимок.

Источник: https://VseOToke.ru/elektrobezopasnost/porazhenie-ehlektricheskim-tokom

Виды повреждений электрооборудования

Лекция 1

1.1. Назначение релейной защиты

1.2. Виды повреждений электрооборудования

1.3. Ненормальные режимы

Назначение релейной защиты

В электрической части энергосистем могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций (ЭС) и подстанций (ПС) линий электропередачи (ЛЭП) и электроустановок потребителей электроэнергии.

Повреждения вызывают появление значительных аварийных токов и сопровождаются глубоким понижением напряжения на шинах ЭС и ПС. Ток повреждения выделяет большое количество теплоты, которое вызывает сильное разрушение в месте повреждения (точка К) и опасное нагревание проводов неповрежденных ЛЭП и оборудования, по которым этот ток проходит (рис. 1.1).

Читайте также:  Обогреватель своими руками: 4 лучшие идеи сборки с фото

Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы ЭС энергосистемы (ЭСС).

Ненормальные режимы обычно приводят к отклонению напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости ЭЭС, а повышение напряжения и тока угрожает повреждением оборудования и ЛЭП.

Для уменьшения разрушений в месте повреждения и обеспечения нормальной работы неповрежденной части ЭЭС необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной части ЭЭС.

Повреждения в электроустановках: виды, причины, меры защиты

Рис.1.1. Схема участка энергосистемы

Опасные последствия ненормальных режимов также можно предотвратить, если своевременно принять меры к их устранению (например, снизить ток или напряжение при их увеличении), а при необходимости отключить оборудование, оказавшееся в недопустимом для него режиме.

Выявление и отключение повреждений следует производить очень быстро – в большинстве случаев в течение сотых и десятых долей секунды, что может быть обеспечено только средствами автоматики.

В связи с этим возникла необходимость в создании и применении автоматических устройств, защищающих ЭЭС и ее элементы от опасных последствий повреждений и ненормальных режимов. Первоначально в качестве подобной автоматики (защиты) применялись плавкие предохранители.

Впоследствии были созданы защитные устройства, выполняемые при помощи электрических автоматов-реле. Такой способ защиты получил название релейной защиты.

Релейная защита (РЗ) осуществляет непрерывный контроль за состоянием всех элементов ЭЭС и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить поврежденный участок (например, на рис.1.1 трансформатор ТС) и отключить его от ЭЭС, воздействуя на специальные силовые выключатели Q, предназначенные для размыкания токов повреждения.

При возникновении ненормальных режимов РЗ также должна выявлять их и в зависимости от характера нарушения либо отключать оборудование, если возникла опасность его повреждения, либо производить автоматические операции, необходимые для восстановления нормального режима, либо осуществлять сигнализацию оперативному персоналу, который должен принимать меры к ликвидации ненормальности.

Релейная зашита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

Она тесно связана с другими видами электрической автоматики, предназначенной для предотвращения развития аварийных нарушений и быстрого восстановления нормального режима работы ЭЭС и электроснабжения потребителей: автоматического повторного включения (АПВ), автоматического включения резервных источников питания (АВР), автоматической частотной разгрузки (АЧР) и др.

Виды повреждений электрооборудования

Повреждения в электрических системах чаще возникают на линиях сетей.

Повреждения в обмотках электрических машин, и особенно таких аппаратов, как трансформаторы и автотрансформаторы, бывают реже, иногда имеют специфический характер, обусловленный их выполнением (например, витковые КЗ), и могут сопровож­даться тяжелыми для них последствиями. Основные виды повреждений приведены в табл. 1. Возможны и более сложные виды повреждений, представляющие сочетание некоторых из перечисленных.

Повреждения в электроустановках: виды, причины, меры защиты Таблица 1

Так, например, при разрыве провода линии у изолятора упавший на землю конец вы­зывает появление однофазного КЗ – K(1)или однофазного замыкания – (1)(например, в сети с изолированными нейтралями) с разрывом фазы.

Соотношения, подобные разрыву, возникают также при отказах в работе части фаз автоматических выключателей (характерны для воздуш­ных выключателей с пофазным приводом). В процессе раз­вития повреждений возможны также переходы одного ви­да повреждений в другой, чаще с охватом большего числа фаз.

Так, например, (1)иногда переходят в двойные КЗ на землю Кдв(1,1), что может быть на линиях или при (1) в обмотке машины или аппарата и возникновении Кдв(1,1) за счет пробоя на землю на линии того же напряжения.

С другой стороны, внутри однофазных аппаратов много­фазные КЗ (без земли) практически вообще невозможны.

Ненормальные режимы

Повреждения в электроустановках: виды, причины, меры защиты Перегрузка оборудования, вызванная сверхтоком, т.е. увеличением тока сверх номинального значения. Номинальным называется максимальное значение тока, допускаемое для данного оборудования в течение неограниченного времени. Если ток I, проходящий по оборудованию, превышает номинальное значение, то за счет выделяемой им дополнительной теплоты температура токоведущих частей и изоляции через некоторое время превосходит допустимое значение, что приводит к ускоренному старению изоляции и токоведущих частей. Время tД допустимое для прохождения повышенных токов, зависит от их значения. Характер этой зависимости, определяемой конструкцией оборудования и типом изоляционных материалов, приведен на рис.1.2. Причиной сверхтока может быть увеличение нагрузки или появление КЗ за пределами защищаемого элемента (внешнее КЗ). Для предупреждения повреждения оборудования при его перегрузке необходимо принять меры к его разгрузке или отключению в пределах времени tД.

Повышение напряжения сверх допустимого значения может возникнуть на гидрогенераторах, а также на турбогенераторах большой мощности, работающих по схеме блока, при внезапном отключении их от сети. Для предотвращения повреждения оборудования предусматривается РЗ, действующая на гашение поля генератора.

Опасное для изоляции оборудования повышение напряжения может возникнуть также при одностороннем отключении или включении длинных ЛЭП высокого напряжения (ВН) с большой емкостной проводимостью. Ликвидация опасных повышений напряжения в сетях сверхвысокого напряжения осуществляется с помощью специальной автоматики.

Качания возникают при нарушении синхронной работы генераторов электростанций ЭЭС. Для пояснения процесса качаний рассмотрим упрощенную схему ЭЭС с двумя электростанциями А и В (рис.1.3, а). В режиме нормальной синхронной работы электростанций А и В электрические частоты вращения векторов ЭДС ЕА и ЕВ одинаковы: wА=wВ=w=2π¦ (рис.1.10, б).

При отсутствии нагрузки и равенстве по значению и фазе ЭДС ЕА=ЕВ=ЕС ток в межсистемной ЛЭП отсутствует (рис.1.10, а). В случае нарушения синхронизма, когда, например, wА>wВ, положение вектора ЕА по отношению к ЕВ будет изменяться, появится разность ЭДС ΔЕ=ЕА- ЕВ, под действием которой возникнет уравнительный ток Iу=ΔE/(XA+XW+XB).

Разность ЭДС ΔE будет изменяться с изменением угла δ (рис.1.10, б). При δ=0, ΔE=0, при δ=180° ΔE=2Е. При дальнейшем нарастании угла δ ЭДС ΔE начнет уменьшаться и станет равной нулю, когда δ достигнет 360° (или δ=0). При повторном цикле увеличения δ процесс изменения ΔE повторяется вновь.

Колебания значения ΔE вызывают соответствующие колебания (качания) значения тока Iу и напряжений UA и UB, как показано на рис.1.3, в.

Повреждения в электроустановках: виды, причины, меры защиты

Напряжение снижается от нормального до некоторого минимального значения, имеющего разное значение в разных точках сети (рис.1.3, г). В точке КЦ называемой электрическим центром качаний, напряжение имеет наименьшее значение и снижается до нуля при δ=180°, когда ЕА=ЕВ. В остальных точках сети напряжение снижается, но остается больше нуля, нарастая от центра качания КЦ к источникам питания А и В. Возрастание тока вызывает нагревание оборудования, а уменьшение напряжения нарушает работу всех потребителей ЭЭС. Качание – очень опасный ненормальный режим, отражающийся на работе всей ЭЭС.

Рис.1.3. К пояснению действия релейной защиты при качаниях:

а – схема энергосистемы; б – векторная диаграмма при наличии между ЭДС угла δ; в – диаграмма изменения токов и напряжений; г – определение положения центра качаний КЦ

По характеру изменения тока и напряжения (рис.1.10, в) качания похожи на КЗ. Большинство устройств РЗ могут приходить в действие при качаниях и отключать защищаемые ими элементы.

Такие хаотичные отключения разделяют ЭЭС на изолированные участки с дефицитом или избытком генерируемой мощности, что может привести к частичному или полному нарушению электроснабжения питающихся от ЭЭС потребителей.

Поэтому необходимы меры, исключающие хаотичное действие РЗ при возникновении качаний.

Асинхронный режим. К ненормальным режимам относится также работа синхронного генератора без возбуждения [например, при отключении автомата гашения поля (АГП)]. При работе в асинхронном режиме увеличивается частота вращения генератора и возникает пульсация тока статора.

Для генераторов некоторых типов длительная работа в асинхронном режиме не допускается, а для других допускается лишь при уменьшенном значении активной мощности. В отдельных случаях потеря возбуждения, не представляя опасности для самого генератора, может послужить причиной резкого снижения напряжения, угрожающего нарушением устойчивости параллельной работы.

В этом случае генератор, оставшийся без возбуждения, должен быть немедленно отключен от сети.

Рекомендуемые страницы:

Источник: https://poisk-ru.ru/s46392t3.html

Причины поражения электрическим током и основные меры защиты

  • Классификация электроустановок
  • Электроустановки в отношении мер электробезопасности разделяются по напряжению:
  • — до 1 кВ;
  • — выше 1 кВ.
  • Электроустановки напряжением до 1 кВ в отношении мер электробезопасности подразделяются на:
  • — электроустановки с изолированной нейтралью (по международной классификации — система IT);
  • — электроустановки с глухозаземленной нейтралью (система TN и её модификации: TN – C, TN – S).
  • Используемые определения содержатся в «Правилах устройства электроустановок» (ПУЭ).
  • Электроустановка — совокупность машин, аппаратов, линий и вспомогательного оборудования, предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования её в другие виды энергии.
  • Открытая проводящая часть (ОПЧ) — доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции (например корпус электроустановки).

Прямое прикосновение – электрический контакт людей с токоведущими частями, находящимися под напряжением.

Косвенное прикосновение – электрический контакт людей с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.

Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству (см. рисунок, точка 2).

Изолированная нейтраль – нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству (см. рисунок, точка 1).

Нулевой рабочий (нейтральный) проводник — проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора (см. рисунок, N).

Нулевой защитный проводник — защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей (ОПЧ) к глухозаземленной нейтрали источника питания (см. рисунок, РЕ).

  1. Приведем международную и российскую классификацию электроустановок.
  2. Фазные провода сети по международной классификации обозначаются L1, L2, L3, а по российской – А, В, С.
  3. В международной классификации буквы определяют следующее.
  4. Первая буква – состояние нейтрали источника питания относительно земли:
  5. Т – заземленная нейтраль;
  6. I – изолированная нейтраль.
  7. Вторая буква — состояние открытых проводящих частей относительно земли:
  8. Т – открытые проводящие части заземлены (ОПЧ), независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
  9. N – открытые проводящие части (ОПЧ) присоединены к глухозаземленной нейтрали источника питания.
  • Последующие (после N) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
  • S – нулевой рабочий (N) и нулевой защитный (PE) проводники разделены;
  • С – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник).
  • N — — нулевой рабочий (нейтральный) проводник;
  • РЕ — — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);
  • PEN — — совмещенный нулевой защитный и нулевой рабочий проводник.
  • Электроустановки (электрические сети) в отношении мер безопасности могут работать в двух режимах:
  • — нормальном – когда обеспечиваются заданные значения параметров её работы (замыканий на землю нет);
  • — аварийном – при однофазном замыкании на землю.
  • Основные причины несчастных случаевот воздействия электрического тока следующие:
  • 1) случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением;

2) появление напряжения на металлических конструктивных частях электрооборудования – корпусах, кожухах и т. п. – в результате повреждения изоляции и других причин;

  1. 3) появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения установки;
  2. 4) возникновение шагового напряжения на поверхности земли в результате замыкания провода на землю.
  3. Основными мерами защиты от поражения токомявляются:
  4. — обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения;
  • — электрическое разделение сети;
  • — устранение опасности поражения при появлении напряжения на корпусах, кожухах и других частях электрооборудования, что достигается применением малых напряжений, использованием двойной изоляции, выравниванием потенциала, защитным заземлением, занулением, защитным отключением и др.;
  • — применение специальных электрозащитных средств – переносных приборов и приспособлений; организация безопасной эксплуатации электроустановок.
  • Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, размещением их на недоступной высоте, ограждением и др.
Читайте также:  Набор для электрика: универсальный, нэу

Электрическое разделение сети – это разделение электрической сети на отдельные электрически не связанные между собой участки с помощью специальных разделяющих трансформаторов. В результате изолированные участки сети обладают большим сопротивлением изоляции и малой емкостью проводов относительно земли, за счет чего значительно улучшаются условия безопасности.

Применение малого напряжения. При работе с переносным ручным электроинструментом – дрелью, гайковертом, зубилом и т. п., а также ручной переносной лампой человек имеет длительный контакт с корпусами этого оборудования.

В результате для него резко повышается опасность поражения током в случае повреждения изоляции и появления напряжения на корпусе, особенно, если работа производится в помещении с повышенной опасностью, особо опасном или вне помещения.

Для устранения этой опасности необходимо питать ручной инструмент и переносные лампы напряжением не выше 42В.

Кроме того, в особо опасных помещениях при особенно неблагоприятных условиях (например, работа в металлическом резервуаре, работа сидя или лежа на токопроводящем полу и т.п.) для питания ручных переносных ламп требуется еще более низкое напряжение – 12 В.

Двойная изоляция – это электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Рабочая изоляция предназначена для изоляции токоведущих частей электроустановки, обеспечивая ее нормальную работу и защиту от поражения током.

Дополнительная изоляция предусматривается дополнительно к рабочей для защиты от поражения током в случае повреждения рабочей изоляции. Двойную изоляцию широко применяют при создании ручных электрических машин.

При эксплуатации таких машин заземление или зануление их корпусов не требуется.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/2_119450_prichini-porazheniya-elektricheskim-tokom-i-osnovnie-meri-zashchiti.html

3. Повреждения и ненормальные режимы в электроустановках

Большинство повреждений в электроустановках приводит к коротким замыканиям (к.з.) фаз между собой или на землю. В обмотках электрических машин (генераторов, трансформаторов и электродвигателей), кроме того, бывают замыкания между витками одной фазы (витковые замыкания).

Основными причинами повреждений являются:

  • нарушения изоляции токоведущих частей, вызванные её старением, неудовлетворительным состоянием, перенапряжениями, механическими повреждениями;
  • ошибки персонала при операциях с электрооборудованием (отключение разъединителя под нагрузкой, включение разъединителя на ошибочно оставленное заземление, включение заземляющих ножей под напряжение и т.п.). Короткие замыкания (к.з.) являются наиболее опасными и тяжелыми видами повреждений.

При коротком замыкании э.д.с Е источника питания (генератора) замыкается «накоротко» через относительно малое сопротивление генератора, трансформатора и линий. В контуре замкнутой накоротко э.д.с. возникает большой ток Iк, называемый током к.з.

При к.з. из-за увеличения тока возрастает падение напряжения в элементах системы, что приводит к понижению напряжения во всех точках сети, так как напряжение в любой точке М (см. рисунок 1.1) UМ = Е — IЗА Zм , где Е — э.д.с. источника питания, Zм – сопротивление от источника питания до точки М.

Наибольшее снижение напряжения происходит в месте к.з.

Увеличение тока и снижение напряжения, происходящие в результате к.з., приводят к ряду опасных последствий:

Понижение напряжения при к.з. нарушает работу потребителей.

Основным потребителем электроэнергии являются асинхронные электродвигатели, момент вращения которых MД пропорционален квадрату напряжения U на их зажимах: MД = КU2. При глубоком снижении напряжения момент вращения электродвигателей может оказаться меньше момента сопротивления механизмов, что приводит к их остановке.

Кроме того, из-за снижения напряжения при к.з. также нарушается нормальная работа осветительных установок и компьютерной техники. Нарушение устойчивости параллельной работы генераторов является наиболее тяжелым последствием снижения напряжения при к.з.

Это может привести к распаду энергосистемы и прекращению электроснабжения всех её потребителей

Аварии с нарушением устойчивости системы по величине ущерба являются самыми тяжелыми.

В зависимости от числа замкнувшихся фаз к.з. подразделяются на трёхфазные, двухфазные и однофазны; замыкания с землёй и без земли; замыкания в одной и двух точках сети (таблица 1-1).

Таблица 1-1 — Основные виды повреждений в электроустановках.

Трёхфазные замыкания:замыкания между тремя фазами К(3)
Трёхфазные замыкания на землю К(1, 1, 1)
Двухфазные замыкания:замыкания между двумя фазами К(2)
Двухфазные замыкания на землю К(1. 1)
Разрыв фазы
  • Ненормальными режимами, связанными с отклонением от допустимых значений тока, напряжения и частоты и представляющими опасность для электроснабжения потребителей электроэнергии и энергосистемы в целом, являются: перегрузка оборудования, повышение напряжения, качания в системе.
  • Перегрузка оборудования – это превышение тока по оборудованию сверх номинального значения.
  • Если ток превышает номинальное значение, то за счёт выделяемого им дополнительного тепла через некоторое время температура токоведущих частей и изоляции превысит допустимую величину, что приведёт к ускоренному износу изоляции и её повреждению.

Характер зависимости допустимой длительности перегрузки от величины тока: t = (I) показан на рисунке 1.4 и определяется конструкцией оборудования и типом используемых в оборудовании изоляционных материалов.

Рисунок 1.4 – Зависимость допустимой длительности перегрузки от величины тока.

Для предупреждения повреждения оборудования при перегрузках необходимо принимать меры по разгрузке или отключению оборудования.

Повышение напряжения – это превышение напряжения на оборудовании сверх допустимого значения.

Обычно повышение напряжения возникает на гидрогенераторах при внезапном отключении его нагрузки из-за увеличения частоты вращения и возрастания вследствие этого э.д.с. статора до значений, опасных для его изоляции.

  1. Опасное для изоляции повышение напряжения может возникнуть также при одностороннем отключении или включении длинных линий электропередачи с большой ёмкостной проводимостью.
  2. При повышениях напряжения необходимо его снижать вручную или отключать оборудование от сети.
  3. Качания в системах– периодическое изменение («качание») тока, напряжения, активной и реактивной мощности.

Качания возникают при выходе из синхронизма работающих параллельно генераторов и сопровождаются возрастанием тока и снижением напряжения в сети. На эти изменения тока и напряжения защиты реагируют также, как и на симметричное к.з.

Источник: https://studfile.net/preview/6757335/page:3/

Причины поражения электрическим током и основные меры защиты

  • Можно выделить следующие причины электротравм:
  • Технические причины – несоответствие электроустановок, средств защиты и приспособлений требованиям безопасности и условиям применения, связанное с дефектами конструкторской документации, изготовления, монтажа и ремонта; неисправности установок, средств защиты и приспособлений, возникающие в процессе эксплуатации.
  • Организационно-технические причины — несоблюдение технических мероприятий безопасности на стадии эксплуатации (обслуживания) электроустановок; несвоевременная замена неисправного или устаревшего оборудования и использование установок, не принятых в эксплуатацию в предусмотренном порядке (в том числе самодельных).
  • Организационные причины — невыполнение или неправильное выполнение организационных мероприятий безопасности, несоответствие выполняемой работы заданию.
  • Организационно-социальные причины:
  • · работа в сверхурочное время (в том числе работа по ликвидации последствий аварий);
  • · несоответствие работы специальности;
  • · нарушение трудовой дисциплины;
  • · допуск к работе на электроустановках лиц моложе 18 лет;
  • · привлечение к работе лиц, неоформленных приказом о приеме на работу в организацию;
  • · допуск к работе лиц, имеющих медицинские противопоказания.

При рассмотрении причин необходимо учитывать так называемые человеческие факторы. К ним относятся как психофизиологические, личностные факторы (отсутствие у человека необходимых для данной работы индивидуальных качеств, нарушение его психологического состояния и пр.), так и социально-психологические (неудовлетворительный психологический климат в коллективе, условия жизни и пр.).

  1. Меры защиты от поражения электрическим током
  2. Согласно требованиям нормативных документов, безопасность электроустановок обеспечивается следующими основными мерами:
  3. 1) недоступностью токоведущих частей;
  4. 2) надлежащей, а в отдельных случаях повышенной (двойной) изоляцией;
  5. 3) заземлением или занулением корпусов электрооборудования и элементов электроустановок, могущих оказаться под напряжением;
  6. 4) надежным и быстродействующим автоматическим защитным отключением;
  7. 5) применением пониженных напряжений (42 В и ниже) для питания переносных токоприемников;
  8. 6) защитным разделением цепей;
  9. 7) блокировкой, предупредительной сигнализацией, надписями и плакатами;
  10. 8) применением защитных средств и приспособлений;
  11. 9) проведением планово-предупредительных ремонтов и профилактических испытаний электрооборудования, аппаратов и сетей, находящихся в эксплуатации;

10) проведением ряда организационных мероприятий (специальное обучение, аттестация и переаттестация лиц электротехнического персонала, инструктажи и т.д.).

  • БИЛЕТ
  • Защитное заземление и зануление
  • Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.
  • Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека от поражения электрическим током, если он прикоснулся к корпусу элекроустановки или других ее частей, которые оказались под напряжением.

Защитное заземление — преднамеренное электрическое соединение части электроустановки с заземляющим устройством с целью обеспечения электробезопасности.

Предназначено для защиты человека от прикосновения к корпусу электроустаноувки или других ее частей, оказавшихся под напряжением. Чем ниже сопротивление заземляющего устройства, тем лучше.

Чтобы воспользоваться преимуществами заземления, надо купить розетки с заземляющим контактом.

В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением.

Если к корпусу в это время прикоснулся человек — ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.

  1. Есть два вида заземлителейестественные и искусственные.
  2. К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.
  3. В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой.

ащитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление.

При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека.

Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусcтвенных заземлителей.

Зануление— преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом.

Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления.

Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Различают нулевой рабочий проводник и нулевой защитный проводник.

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.

БИЛЕТ

Читайте также:  Перекос фаз в трехфазной сети: что это такое, причины, последствия, защита

Защита от статического электричества

Статическое электричество (согласно ГОСТ 12.1.018) — это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности (или в объеме) диэлектриков или на изолированных проводниках.

Возникновение зарядов статического электричества. Заряды статического электричества образуются при самых разнообразных производственных условиях, но чаще всего при трении одного диэлектрика о другой или диэлектриков о металлы.

На трущихся поверхностях могут накапливаться электрические заряды, легко стекающие в землю, если физическое тело является проводником электричества и заземлено.

На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они и получили название статического электричества.

Статическое электричество возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твердых веществ, имеющих различные атомные и молекулярные силы поверхностного притяжения.

Мерой электризации является заряд, которым обладает данное вещество. Интенсивность образования зарядов возрастает с увеличением скорости перемещения материалов, их удельного сопротивления, площади контакта и усилия взаимодействия. Степень электризации заряженного тела характеризует его потенциал относительно земли.

В производстве накопление зарядов статического электричества часто наблюдается при: трении приводных ремней о шкивы или транспортерных лент о валы, особенно с пробуксовкой; перекачке огнеопасных жидкостей по трубопроводам и наливе нефтепродуктов в емкости; движении пыли по воздуховодам; дроблении, перемешивании и просеивании сухих материалов и веществ; сжатии двух разнородных материалов, один из которых диэлектрик; механической обработке пластмасс; транспортировании сжатых и сжиженных газов по трубам и истечении их через отверстия, особенно если в газах содержится тонко распыленная жидкость, суспензия или пыль; движении автотранспортера, тележек на резиновых шинах и людей по сухому изолирующему покрытию и т. д.

Сила тока электризации потока нефтепродуктов в трубопроводах зависит от диэлектрических свойств и кинематической вязкости жидкости, скорости потока, диаметра трубопровода и его длины, материала трубопровода, шероховатости и состояния его внутренних стенок, температуры жидкости.

При турбулентном потоке в длинных трубопроводах сила тока пропорциональна скорости движения жидкости и диаметру трубопровода.

Степень электризации движущихся диэлектрических лент (например, транспортерных) зависит от физико-химических свойств соприкасающихся материалов, плотности их контакта, скорости движения, относительной влажности и т. д.

Опасность разрядов статического электричества. Искровые разряды статического электричества представляют собой большую пожаро- и взрывоопасность. Их энергия может достигать 1,4 Дж, что вполне достаточно для воспламенения паро-, пыле- и газовоздушных смесей большинства горючих веществ.

Например, минимальная энергия воспламенения паров ацетона составляет 0,25 ·10-3 Дж, метана 0,28 ·10-3, оксида углерода 8 ·10-3, древесной муки 0,02, угля 0,04Дж. Поэтому в соответствии с ГОСТ 12.1.

018 электростатическая безопасность объекта считается достигнутой только в том случае, если максимальная энергия разрядов, которые могут возникнуть внутри объекта или с его поверхности, не превышает 40 % минимальной энергии зажигания веществ и материалов.

  • Электростатический заряд, возникающий при выполнении некоторых производственных процессов, может достигать нескольких тысяч вольт.
  • Меры защиты:
  • 1.снижение силового воздействия
  • 2.снижение скоростей перемещения слоёв сыпучих материалов и жидкостей
  • 3.изготовление контактирующих тел из материалов с близким удельным сопротивлением
  • 4.нанесение на поверхность токоведущих тел лакокрасочных покрытий
  • 5.обработка антистатиками
  • 6.увеличение относительной влажности выше 65%
  • 7.заземление оборудования
  • 8.ионизация воздуха вблизи мест образования зарядов с помощью нейтрализаторов различного типа
  • 9.токопроводящая обувь, полы , обивки стульев
  • 10.легкосъёмные токопроводящие браслеты
  • БИЛЕТ

Источник: https://studopedia.net/4_18711_prichini-porazheniya-elektricheskim-tokom-i-osnovnie-meri-zashchiti.html

Меры защиты от поражения электрическим током (стр. 1 из 2)

6.4. Меры защиты от поражения электрическим током

  • Электробезопасность

    обеспечивается конструкцией электроустановок, техническими способами и средствами защиты, организационными и техническими мероприятиями.
  • Конструкция электроустановок

    должна соответствовать условиям их эксплуатации и обеспечивать защиту персонала от соприкосновения с токоведущими и движущимися частями
    , а оборудования

    — от попадания внутрь посторонних твердых тел и воды.
  • Способы и средства обеспечения электробезопасности
    : защитное заземление, зануление, защитное отключение, выравнивание потенциалов, малое напряжение, изоляция токоведущих частей, электрическое разделение сетей, оградительные устройства, блокировки, предупредительная сигнализация, знаки безопасности, предупредительные плакаты, электрозащитные средства.
  • Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковеду
    щих частей
    , которые могут оказаться под напряжением в результате повреждения изоляции электроустановки.

Принцип действия защитного заземления
: снижение до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус.

При заземлении корпуса происходит замыкание на землю и прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит в землю через тело человека (рис.6.5).

Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток через человека (Ih
) не опасен.

  1. Область применения защитного заземления
    — трехфазные сети напряже
    нием до 1 кВ с изолированной нейтралью и сети напряжением выше 1 кВ с
    любым режимом нейтрали.
  2. Сопротивление заземляющего устройства, используемого для заземления электрооборудования в электроустановках напряжением до 1 кВс изолированной нейтралью должно быть не более 4 Ом.
  3. При мощности генераторов и трансформаторов 100 кВи менее, заземляющие устройства могут иметь сопротивление не более 10 Ом.
  4. Заземляющее устройство в электроустановках напряжением выше 1 кВс глухозаземленной нейтралью должно иметь сопротивление не более 0,5 Ом,
    а в электроустановках с изолированной нейтралью — не более 10 Ом.

Расчет защитного заземления заключается в определении параметров вертикальных и горизонтальных элементов заземления при условии непревышения допустимого значения сопротивления заземляющего устройства.

Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, соединяющих заземляемое оборудование с заземлителем.

Зануление — это преднамеренное электрическое соединение
с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Задача зануления
: устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки
, оказавшимся под напряжением вследствие замыкания на корпус
. Решается задача быстрым отключением поврежденной электроустановки от сети (рис.6.6).

Принцип действия зануления заключается в превращении замыкания на
корпус в однофазное короткое замыкание
(между фазным и нулевым проводами) с целью вызвать большой ток, обеспечивающий срабатывание защиты, и тем самым автоматически отключить поврежденную ус
тановку от питающей сети.

Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты
. Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловым реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Занулеиие
применяют в трехфазных четырехпроводных сетях напряжением до 1 кВ
с глухозаземленной нейтралью.

Защитное заземление или зануление
электроустановок является обя
зательным в помещениях без повышенной опасности поражения током при номинальном напряжении 380 В
и выше переменного тока, а также 440 В
и выше постоянного тока
.

В помещениях с повышенной опасностью и особо опасных необходимо заземлять или занулять установки при поминальном напряжении 42 Ви выше переменного тока, а также 110 В и выше постоянного тока. Во взрывоопасных помещениях заземление или зануление установок обязательно независимо от напряжения сети.

Защитное отключение — это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при
возникновении в ней опасности поражения током.

При применении этого вида защиты безопасность обеспечивается быстродействующим (не более 0,2 с) отключением аварийного участка или всей сети при однофазном замыкании на землю или на элементы электрооборудования, нормально изолированные от земли, а также при прикосновении человека к частям, находящимся под напряжением.

Схемы и конструкции устройств защитного отключения
.

Схема защитно
го отключения, срабатывающего при появлении напряжения на корпусе
относительно земли (рис. 6.7). В схемах этого типа датчиком служит реле напряжения, включенное между корпусом и вспомогательным заземлителем.

Выравнивание потенциала — метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым
возможно одновременное прикосновение или на которых может одновременно стоять человек.

Для выравнивания потенциала в землю укладывают стальные полосы в виде сетки по всей площади, занятой оборудованием. В производственном помещении корпуса электрооборудования и производственного оборудования в той или иной степени связаны между собой.

При замыкании на корпус в каком-либо из электроприемников все металлические части получают близкое по величине напряжение относительно земли.

В результате напряжение между корпусом электроприемника и полом уменьшается, происходит выравнивание потенциала по всей площади помещения и человек, находящийся в этой цепи замыкания, оказывается под сравнительно малым напряжением.

Малое напряжение — номинальное напряжение не более
42 В
,которое используют для питания электроинструмента, светильников стационарного освещения, переносных ламп в помещениях с повышенной опасностью, особо опасных и на наружных установках. Источниками малого напряжения могут быть специальные понижающие трансформаторы с вторичным напряжением 12-42 В.

Исправ
ность изоляции – это основное условие, обеспечивающие безопасность эксплуатации
и надежность электроснабжения электроустановок
. Для изоляции токоведущих частей
электроустановок применяют рабочую и дополнительную изоляцию
.

Рабочей изоляцией
является эмаль и оплетка обмоточных проводов, пропиточные лаки и компаунды и т.д. Дополнительной изоляцией могут быть пластмассовый корпус машины, изолирующая втулка и т.д.

Электрическая изоляция, состоящая из рабочей и дополнительной,
называется двойной
. Она считается достаточной для обеспечения электробезопасности, поэтому устройствами с двойной изоляцией разрешается пользоваться без применения других защитных средств.

Контроль
сопротивления изоляции может быть периодическим и непрерывным.
Сопротивление изоляции силовых и осветительных электропроводов должно быть не менее 0,5 МОм.

Электрическое разделение сетей — разделение сети
на отдельные электрически не связанные между собой участки с помо
щью разделяющего трансформатора
, который изолирует электроприемник от первичной сети и сети заземления (рис.6.8).

От разделяющего трансформатора может питаться только один элек
троприемник с защитной плавкой вставкой (сила тока вставки автомата на первичной стороне не должна превышать 15А), вторичное напря
жение трансформатора должно быть не выше 380 В
.


Вторичная обмотка трансформатора и корпус электроприемника не должны иметь заземления или связи с сетью зануления.

В таком случае при прикосновении к частям, находящимся под напряжением или к корпусу с поврежденной изоляцией не создается опасность, поскольку вторичная цепь коротка и сила токов утечки в ней и емкостных токов мала.

Защитное разделение сетей используют в электроустановках напряжением до 1000 В,
эксплуатация которых связана с особой и повышенной опасностью (передвижные электроустановки, ручной электрифицированный инструмент и т.п.).

Для исключения случайных прикосновений к токоведущим частям электроустановок применяют оградительные сплошные и сетча
тые устройства
.

Сплошные ограждения обязательны для электроустановок, разме
щаемых в производственных (неэлектрических) помещениях
. Сетчатые ограждения применяют в электроустановках, доступных квалифицированному электротехническому персоналу
.

В случаях, когда изоляция и ограждение токоведущих частей является нецелесообразным (например, воздушные линии высокого напряжения), их размещают на недоступной для прикосновения высоте. Внутри производственных помещений неогражденные неизолированные токоведущие части прокладывают па высоте не менее 3,5 м от пола.

Блокировка — защита от проникновения в опас
ную зону, где находится установка
. Она позволяет автоматически снимать напряжение со всех элементов установки, приближение к которым угрожает жизни человека.

Блокировку применяют в элект
рических аппаратах, при обслуживании которых должны соблюдаться повышенные меры безопасности
, в электрооборудовании,
расположенном в доступных для неэлектротехнического персонала
помещениях.

Источник: https://mirznanii.com/a/192855/mery-zashchity-ot-porazheniya-elektricheskim-tokom

Ссылка на основную публикацию
Adblock
detector